
Real-time Garbage Collection for a Multithreaded Java Microcontroller

S. Fuhrmann, M. Pfeffer, J. Kreuzinger, Th. Ungerer
Institute for Computer Design

and Fault Tolerance
University of Karlsruhe

D-76128 Karlsruhe, Germanyfs fuhrm, pfeffer, kreuzinger, ungererg@ira.uka.de

U. Brinkschulte
Institute for Process Control,

Automation and Robotics
University of Karlsruhe

D-76128 Karlsruhe, Germany
brinks@ira.uka.de

Abstract

Keywords: garbage collection, microcontroller, Java
microprocessor, real-time, multithreading

We envision the upcoming of microcontrollers and
systems-on-a-chip that are based on multithreaded proces-
sor kernels due to the fast context switching ability of hard-
ware multithreading. Moreover we envision an extensive
market for Java-based applications in embedded real-time
systems.

This paper introduces two new garbage collection algo-
rithms that are dedicated to real-time garbage collection on
a multithreaded Java microcontroller. Our garbage collec-
tor runs in a thread slot in parallel to real-time applications.
We show that our algorithms require only about 5% of the
processor time for an effective garbage collection concern-
ing our real-time benchmarks.

1. Introduction

Garbage collection is a research field that has been in-
vestigated since decades. The extensive use of Java in the
last years yields a renewed interest in garbage collection.
Java lacks explicit memory release methods and therefore a
garbage collector is needed to reclaim heap memory that is
no more in use.

The application of Java in embedded real-time systems
produces requirements that are not fulfilled by most existing
garbage collection algorithms. To preserve the predictabil-
ity of the real-time application program execution, the re-
quirements for real-time garbage collection are an incre-
mental algorithm, predictability, feasibility, small synchro-
nization needs, robustness and efficiency. Moreover embed-
ded systems require to get by on small memory.

For the future we envision the upcoming of microcon-

trollers and systems-on-a-chip based on a multithreaded
processor core due to the fast context switching ability of
hardware multithreading. Motivated by our innovative mul-
tithreaded Komodo microcontroller [6], we go one step fur-
ther in garbage collection and examine the use of garbage
collectors in multithreaded hardware with real-time require-
ments. Current approaches investigate the use of multi-
threaded hardware to bridge latencies that arise by cache
misses, pipeline hazards or long running instructions. Mul-
tithreaded processors are able to bridge these latencies ef-
ficiently, if there are enough parallel executable threads
as workload and if the time necessary for switching of
threads is very small. In consequence, recent announce-
ments of high-performance processors by industry con-
cern a 4-threaded Alpha processor of DEC/Compaq [9] and
Sun’s MAJC-5200 processor, which feature two 4-threaded
processors on a single die [10]. Both processors are de-
signed as high-performance processors and will not be suit-
able for low-cost embedded systems. However, the mul-
tithreaded MediaProcessor of MicroUnity [11] is special-
ized for multimedia appliances and the recent multithreaded
Network Communication Processor of XStream Logic [15]
is a dedicated network processor.

Our Komodo project [4] explores the suitability of mul-
tithreading techniques in embedded real-time systems. We
propose multithreading as an event handling mechanism
that allows efficient handling of simultaneous overlapping
events with hard real-time requirements. We design a mi-
crocontroller with a multithreaded processor core. This core
features the direct execution of Java bytecode, a zero-cycle
context switch overhead and hardware support for schedul-
ing and garbage collection [5]. Because of its application
for embedded systems, the target architecture is kept on the
level of a simple pipelined processor kernel, which is able
to issue one instruction per cycle. To scale up for larger
systems, we propose the parallel execution on several mi-
crocontrollers connected by a real-time middleware [7].

Based on the Komodo microcontroller, we build an



adapted Java Virtual Machine with two slightly different
garbage collection algorithms. Both algorithms are incre-
mental in a very fine-grained manner; one gets by without
synchronized regions and the other features very short so-
journs in its synchronized regions.

For better understanding of the requirements for our
garbage collectors, section 2 explains the multithreaded
Komodo microcontroller. Section 3 lists requirements for
garbage collection in a multithreaded real-time environment
and discusses potential algorithmic approaches. Our own
approach is described in section 4, illustrated in section 5,
and discussed concerning real-time issues in section 6. Sec-
tion 7 summarizes related work. Performance evaluations
are shown in section 8 and section 9 concludes the paper.

2. The Komodo Microcontroller

The Komodo microcontroller [6] is a multithreaded Java
microcontroller, which supports multiple threads with zero-
cycle context switching overhead and several scheduling al-
gorithms. Because of its application for embedded systems,
the processor core of the Komodo microcontroller is kept at
the hardware level of a simple scalar processor. The four
stage pipelined processor core consists of an instruction-
fetch unit, a decode unit, an operand fetch unit and an ex-
ecution unit. Four stack register sets are provided on the
processor chip.

The instruction decode unit contains an instruction win-
dow (IW) for each hardware thread. A priority manager de-
cides from which IW the next instruction will be decoded.
We define several scheduling algorithms to handle real-time
requirements. In detail, we implemented the fixed prior-
ity preemptive (FPP), the earliest deadline first (EDF), the
least laxity first (LLF), and the guaranteed percentage (GP)
scheduling schemes [14]. The basic GP scheduling used in
our evaluations in section 8 allows to assign a specific per-
centage of processor time to each thread (of together not
more than 100%). The priority manager applies one of the
implemented thread schedulers for IW selection. In case
of GP scheduling, the percentage conditions are observed
in a very fine-grained manner within 100 processor cycles.
However, latencies may result from branches or memory ac-
cesses. To avoid pipeline stalls, instructions from threads of
less priority can be fed into the pipeline. There is no over-
head for such a context switch. No save/restore of registers
or removal of instructions from the pipeline is needed, be-
cause each thread has it’s own stack register set. In our cur-
rent implementation, the Komodo microcontroller holds the
contexts of up to four threads, which are directly mapped to
hardware threads.

The Komodo microcontroller’s garbage collector is exe-
cuted in one of the hardware thread slots running in paral-
lel to the real-time application threads. Our two proposed

garbage collectors affect the hardware in two ways. First,
each stack entry is enhanced by anobject reference bit,
which indicates that an entry is a reference to an object.
This makes it easy to find all root pointers on the stack.
Second, new instructions have been implemented to allow
read access from one stack to the stack of another thread.
Additionally, the trap routines for byte codes, which manip-
ulate objects, are enriched with instructions for the garbage
collector.

3. Real-time Multithreaded Garbage Collec-
tion

The Komodo microcontroller poses specific require-
ments on garbage collection algorithms due to its hardware
multithreading and its real-time application field:� Incremental— Real-time garbage collectors must be

incremental, i.e. the garbage collection is done in small
portions and the garbage collector is preemptive, be-
cause a real-time service routine cannot be deferred
for an unlimited amount of time[18]. Most of the well-
known garbage collectors are notincremental, but ap-
ply thestop-and-copy-technique[16] that stops all ap-
plications during a garbage collection run. Incremental
collectors can be classified into two groups:

– Snapshot at beginning— the stack is copied
(short stop of the application thread) before the
garbage collection starts and the collector ac-
cesses only the copy, whereas the application
threads still access the original stack (needs write
barriers only).

– Incremental update— the application threads
notify the garbage collection, whenever the stack
is updated (needs read/write barriers).� Predictability— Hard real-time systems require a pre-

dictable behavior such that ana priori worst-case per-
formance analysis is possible. The garbage collector
must maintain fixed upper bounds of run-time interfer-
ence concerning the real-time application thread(s).� Feasibility — The high reliability and robustness re-
quirements of embedded software require an a priori
analysis of run-timefeasibility. The garbage collection
should not disturb real-time scheduling.� Robustness— The garbage collection strategy should
help to realize safe and robust programs. The program-
mer should be freed from writing complex memory
management software that may result in hard-to-find
run-time errors.



� Efficiency— Processor time is a scarce resource, in
particular in embedded systems. The garbage collec-
tion should utilize the available processor time most
efficiently and limit its influence on the execution of
the application threads.� Small synchronization needs— A garbage collector
should benon-disturbing, i.e., it should not prevent
the application threads from their time-critical tasks
by consuming too much processor time. The collec-
tor should perform its task not only in small portions,
but also in time steps that are sufficiently far away from
each other. Each pause of the application threads that
is caused by the garbage collector should be limited.� Non copying— Memory is a limited resource in em-
bedded systems. Thereforecopying garbage collec-
tors are less applicable in embedded systems, because
memory requirements are doubled. Also complex al-
gorithms that would need much memory space are un-
desirable.

A well-known garbage collector scheme is thetricolor
markingthat was first introduced by Dijkstra [8]. Baker’s
incremental copying technique[1] is one of the best-
known real-time techniques, even though it shows signifi-
cant weakness (see [13], p. 136). Baker developed also a
non-copying collector[2] that eases the weaknesses of his
copying collector. The collector works with four double-
chained lists, which represent the execution state of objects
in the garbage collection:

new-set links newly allocated objects,

free-set manages freed objects,

from-set lists all objects marked before the garbage collec-
tion, i.e. thewhite objectsof the tricolor scheme,

to-set concerns all objects being processed, i.e. linking the
blackobjects (the already visited) and thegrayobjects
(the objects under treatment).

4. Garbage Collection for the Komodo Micro-
controller

4.1 General Layout of Memory Management

The memory management system of the Komodo micro-
controller is separated into two layers: The lower layer with
the explicit memory management and the upper layer with
the automatic memory management. The lower layer pro-
vides the explicit memory management methods (alloc(),
free()), visible for the garbage collector, but invisible to the
application. The garbage collection is part of the upper

layer, which itself hides memory disposal from the appli-
cation threads, but provides object allocation methods for
the application.

The memory management chosen for Komodo allocates
memory blocks in sizes of power of two. Allocation re-
quests are being rounded up to the next power of two and
then resolved by a table lookup. This solution achieves
good performance, but induces fragmentation [19] yielding
an average memory usage of about 75%, which may be un-
acceptable for embedded systems with very small memory.

The order of memory operations (allocation, freeing) is
arbitrary. Allocation requests of memory blocks are satis-
fied in fixed portions (powers of two). Allocation informa-
tion is stored implicitly by storing each block into a separate
list for its size class. Using this strategy abest-fitalgorithm
is implemented.

In the worst-case the memory management has to look
upall block classes to satisfy a request of the smallest block
size. The time complexity of the tests in the free lists isO (logn) with a memory size ofn (in our implementation
a maximum of 15 tests for 1 MB memory size).

4.2. Garbage collection

In the following section, we propose two new algo-
rithms, which are based upon Dijkstra’s tricolor marking [8]
and Baker’s non-copying collector [2]. The two algorithms
differ in how gray marked objects are being treated.

The algorithms mark themselves off the real-time algo-
rithms presented in the prior section and stand in contrast to
the trend of heuristic copying garbage collectors. The phi-
losophy of the new collectors isnotonly a fast execution in
the common case that may have a long worst-case execu-
tion time. The aim is a simple, homogenous, and therefore
computable algorithm with apredictable maximum execu-
tion time.

For reasons of simplicity the first algorithm is named
NADEL (needle) and the second KETTE (chain). The name
NADEL (needle) stems from the search for gray objects
that is similar to the search for the so-called’needle in the
haystack’.

In the following unvisited and unused objects are colored
white. Used objects are colored gray until all their descen-
dants are visited, and then they are colored black.

NADEL and KETTE are similar in their proceeding. They
adapt the tricolor marking to a multithreaded execution en-
vironment. They operate in the following phases:

1. Mark

(a) In the beginning mark all objectswhite.

(b) Mark all static objects. Since the garbage collec-
tion does not remove unused Java classes from



memory, all objects referenced by static fields of
a class are being markedgray. This excludes the
possibility of wrongly freed objects.

(c) Mark the objects directly reachable from the
stackgray. All stacks of the application threads
must be inspected for marking the objects that are
directly reachable from the stacks as being alive.

(d) Mark all reachable objects on the heapgray
(including theirdescendants). The prior mark-
ing operations only affected the objectsdirectly
reachable from the stacks or classes. To complete
the marking phase, all objects indirectly reach-
able from this marked set must be also marked.
Objects with all descendants marked gray are
markedblack. Because this phase is indepen-
dent of the location of the stacks it has been split
from the prior marking to reach a higher level of
independency.

2. Sweep

(a) Free all objects coloredwhite. Since the mark
phases colored all reachable objectsblack, all
unreachable objects arenotmarked and therefore
still coloredwhite.

NADEL handles gray objects as follows: NADEL holds
all objects in a global listGC_OBJS. If an object’s color
changes, NADEL stores a byte value representing the color
in the object’s header. The object colors only change
monotonically in a garbage collection cycle from white to
gray to black. Therefore it is not necessary to synchronize
reading and writing the color of objects.

KETTE also uses a color value in the object header,
but additionally uses four lists:GC_WLIST, GC_GLIST,
GC_BLIST, GC_OBJS. Greyand white objects are in the
double linked listGC_WLIST. Grey objects are addition-
ally in the single linked listGC_GLIST (fast access to gray
objects). After all children of an object have been exam-
ined by the garbage collection, the object is colored black
and transferred from the double linked listGC_WLIST to
the double linked (black) listGC_BLIST. New objects are
stored in a separate double linked listGC_OBJS by the
new-traps and are marked black at the beginning of their
lifetime. These two lists for black objects avoid collisions
between the garbage collection and object creation when
coloring objects black (therefore less synchronization over-
head).GC_BLIST andGC_OBJS are being merged when
swapping the colors black and white and transferred to
GC_WLIST. To maintain list coherency, all list operations
on shared lists must besynchronizedwith all other applica-
tion threads.

The algorithms have the following features in common:

� Non-moving mark-and-sweep-collectors,� Non-overlapping mark and sweep phases,� Exact pointer handling (stack & heap),� Incremental update,� Garbage collection in aseparate thread,� Runnable in a separate thread slot,� Permanent execution of the application threads possi-
ble (no long pauses).

For further discussions of the real-time issues of our al-
gorithms see section 6.

5. Example

Figure 1 depicts a snapshot of the NADEL garbage col-
lector. On top there is the runtime stack that forms the ma-
jor set of root pointers. Each circle represents an object on
the heap. The solid arrows depict pointers to objects on the
heap. The colors of the circles stand for the garbage col-
lection state of the respective object. White objects have
not been processed yet. The gray objects have been vis-
ited, but not their descendants. The black objects have been
processed completely including their descendants.

Run time stack

heap

GC_
OBJS

head

tail

Figure 1. Snapshot of a NADEL garbage col-
lection run

All objects are kept in a single double linked list
GC_OBJS, which is outlined by dashed arrows. For search-
ing a gray object, a traversal of the linked listGC_OBJS is
necessary. In the worst case a search in a linked list has a
time complexity inO(n). Because each object has to be
found once, the resulting time complexity for the garbage
collector isO(n2).

Figure 2 shows the same example with the KETTE

garbage collection. Comparing to NADEL there are more
lists for the object management. TheGC_WLIST list con-
tains the white and gray objects. The gray objects are ad-
ditionally held by theGC_GLIST list. Black objects reside
in theGC_BLIST list. For searching gray objects only one
list operation in theGC_GLIST list is necessary, this results
in a complexity ofO(n) for the garbage collection.



Run time stack

heap
GC_
WLIST

GC_
GLIST

GC_
BLIST

Figure 2. Snapshot of a KETTE garbage col-
lection run

6. Discussion of Real-time Issues

Since our garbage collector runs incremental using its
own hardware thread slot, the interference with the appli-
cation real-time threads is widely reduced. But in fact this
interference is not null.

There are two basic issues, where the garbage collec-
tor affects the application real-time threads: first, the ad-
ditional barrier code that is being executed on the context
of the application thread, second, the synchronization be-
tween the KETTE garbage collection thread and the appli-
cation threads.

Additional barrier code is needed for both algorithms,
NADEL and KETTE. The implementation of the read/write
barrier of NADEL requires two instructions, if the processed
reference is thenull pointer, nine instructions if the object
has already been marked, and 15 instructions if the object
has to be marked by barrier code.

The read/write barrier of KETTE also requires two in-
structions for thenull pointer, 11 instructions for a marked
object, and 28 instructions if the object must be marked.

The shortest executed instruction with additional barrier
overhead is theastore bytecode. The execution of our
astore trap needs about 40 cycles to succeed. The un-
predictable execution time factor of the application thread
is therefore in the worst-case15+402+40 � 1 � 30% for NADEL

and 28+402+40 � 1 � 60% for KETTE (the fixed slice of execu-
tion is 40 cycles and the dynamic slice ranges from 2 to 15
resp. 28 cycles). Sinceastore is the shortest instruction
with barrier overhead, the calculated values can be consid-
ered to be absolute worst-case for an application thread in a
hard real-time environment.

The waiting time through synchronization of list ac-
cesses occurs only in the KETTE algorithm. Application
threads can be blocked when executing barrier code. While
the duration of such an event is limited, the number of these
events cannot be predicted. This may lead to priority inver-
sion. With the use of methods against priority inversion the
critical intervals can be bounded in the case of a FPP or EDF
scheduler. In the case of GP methods against priority inver-

sion still have to be examined. A possible solution would
be to add the percentage of a blocked thread to the blocking
thread resulting in some sort of percentage inheritance.

7. Related Work

To our knowledge no investigations have been done yet
to implement real-time garbage collection on multithreaded
processors. Comparing our new algorithms with classic
garbage collection algorithms, the most similarity exists
with Baker’s non-copying collector. Objects are managed
in lists and the algorithms are therefore appreciable in time
cost. In contrast to Baker’s non-copying collector there’s no
strong separation of objects between the lists, i.e. in the new
algorithms, the presence of an object intwo lists at the same
time is allowed for the reason of efficiency (not allowed in
Baker’s scheme).

In contrast to Baker’scopying collector, nothing is done
against fragmentation by both of our collectors. This design
decision makes it possible to estimate the runtime of the
garbage collection. The collectors don’t consume processor
time for copying objects and don’t need the double amount
of memory like a copying collector does.

The garbage collection of Huelsbergen & Winterbottom
([12], non-real-time) and of Wallace & Runciman ([17],
worst-case time complexityO(n2)) serve as a motivation
for emphasis on synchronization, management cost (mem-
ory words per object) and worst-case performance. These
points separate our new main algorithm into the two algo-
rithms NADEL and KETTE.

A completely different approach to real-time garbage
collection is done by theReal Time Specification for Java
[3]. Memory is divided into three different areas: scoped
memory, physical memory and immortal memory. Scoped
memory contains objects with a limited lifetime. Physical
memory is a memory area for objects with special impor-
tant characteristics as e.g. a memory with fast access. Im-
mortal memory stores objects that are never garbage col-
lected. In contrast to that, our approach uses a faster and
less complex memory structure, keeping memory manage-
ment invisible to the application threads. Our garbage col-
lection algorithms are dedicated to a multithreaded proces-
sor, in contrast to the Real Time Specification for Java. If
the Real Time Specification would be applied to a multi-
threaded processor, our algorithms may be integrated into
the specification.

8. Performance Evaluation and Results

The performance tests presented in this section were
done with a software simulator for the Komodo micro-
controller. The simulated Java Virtual Machine was in a



stage of development not yet incorporating speed-up tech-
niques like quick opcodesand resolved methodsknown
from SUN’s picoJava processor. With such techniques
the application threads are faster in producing objects and
therefore the garbage collection needs more processor time.

8.1. Average and Worst-Case Performance Bench-
mark

We developed specific benchmarks to investigate the
average and the worst-case performance of NADEL and
KETTE. A linear list of objects is collected asaverage
casein the marking direction, and against the marking di-
rection representing theworst case. NADEL needs a long
time for theworst-casetest, because the complexity of the
garbage collection time isO(n2), wheren is the number
of objects. KETTE shows no differences between average
andworst casetest. Each algorithm has to execute some
list operations for carrying on. In the worst-case NADEL

has to search through the whole heap, whereas KETTE only
performs one list operation.

8.2. Caffeine Embedded Benchmarks

As second benchmark, we used theCaffeine Embed-
ded Benchmarks, which are Java benchmarks especially de-
signed for microcontrollers. They need only a minimum
number of API classes and measure the basic performance
of the microcontroller.

Like all Java applications, the Caffeine Embedded
Benchmarks feature a specific behavior of memory alloca-
tion. It is of particular interest to study the gain of free
memory, when the garbage collection, which is running in
parallel to the benchmark, is getting more calculation time.

For the tests, the garbage collection is executed in a
never-ending loop. For an exact assignment of the process-
ing time, we used theguaranteed percentagescheduling
(see section 2) withaccurate rates. That means, no thread
takes advantage of the latencies of other threads and always
gets its fixed time slice.

In figures 3 and 4 the graphs of several simulation runs
of NADEL and KETTE are depicted with different rates of
processing time given in percentages of the GP scheduling
scheme. A falling of the memory level is provoked by the
benchmark, a rise by the garbage collector. Due to the per-
manently running garbage collector the marking phases can
be recognized as a falling or constant memory level and
the sweeping phases as a mainly rising or constant mem-
ory level.

The figures 3 and 4 show that the memory needed for the
execution of the Caffeine Benchmarks is getting smaller at
a high rate of garbage collection. The lowest graph in the

figures represents the Caffeine Benchmark without garbage
collection.

60 70 80 90 100 110 120

million clock cycles

400

500

600

700

800

900

1000

k
B
y
te

(f
re
e
m
em

o
ry
)

5%GC
2%GC
1%GC
no GC

Caffeine Embedded-Benchmark of NADEL

Figure 3. Free memory of NADEL with a fixed
rate of processing time

60 70 80 90 100 110 120

million clock cycles

400

500

600

700

800

900

1000

k
B
y
te

(f
re
e
m
em

o
ry
)

5% GC

2% GC
1% GC
no GC

Caffeine Embedded-Benchmark of KETTE

Figure 4. Free memory of KETTE with a fixed
rate of processing time

The most interesting effect of the graphs can be recog-
nized at the positions of the latest three slopes in the 5%-
curves in figures 3 and 4, e.g. the maximum of the latest
slope in KETTE occurs later than in NADEL. KETTE inter-
feres with the Caffeine Embedded Benchmark in its criti-
cal sections. Due to the exact scheduling KETTE only gets
its small amount of processing time, even though nothing
else is being computed. Thus the critical sections of KETTE

are enlarged compared to a different scheduling strategy.
In spite of their high amount of processing time the Caf-
feine Embedded Benchmarks wait for the garbage collec-
tion, which has a lower priority. This effect resembles the
priority inversion, even though there are only two active



threads. The graph for KETTE looses significance due to
this effect. The inheritance of percentages proposed in sec-
tion 6 may be a solution for this problem.

8.3. Producer Consumer Benchmark

As last benchmark we simulated aproducer consumer
benchmark, which is a typical application of embedded sys-
tems. The motivation for this benchmark is an autonomous
guided vehicle equipped with the Komodo microcontroller
as a control unit [4]. The vehicle orients itself by a line
on the floor, which is being recognized by a line camera
in a 64-bit vector (producer thread). This vector has to be
processed for the calculation of the driving direction (con-
sumer thread).

The benchmark is based on these specifications. The mi-
crocontroller executes two threads in parallel: the producer
and the consumer. The producer creates a byte vector with
dimension64, fills it with random values and stores it in a
shared container object. The consumer waits for new data
from the camera in the container object, picks them up when
available and does a few operations on the data.

The actual realization of the benchmark resembles the
approach for the Caffeine Benchmark. Both garbage col-
lectors NADEL and KETTE were run with anexactpercent-
age of processing time withguaranteed percentageschedul-
ing. The producer and the consumer threads share the total
processing time minus the fraction of processing time for
the garbage collection.

The results of the benchmark are depicted in figures 5
and 6. The graphs show the free memory in relation to the
execution time of the benchmark.

Both graphs show that a rate of 1% is not sufficient for
garbage collection. The graphs of the 5% garbage collec-
tion show sufficient garbage collection ability. The garbage
collection keeps up with the object allocation. The 10%
garbage collection rate performs smoother and frees more
memory than a 5% rate, but the gain is just in the range of
about 1 kByte. With this information we suppose a high
degree of saturation of the garbage collection.

All the measurements refer to a data interval of about 2
ms at a clock rate of 50 MHz. A higher data rate requires
a higher rate of garbage collection. A new object is created
on an average of every 50.000 clock cycles.

An upper limit of the garbage collection rate of KETTE

can be calculated. The relation of the garbage collection in
percentage of the total processor time, denoteda, to appli-
cation time (1 � a) equals the relation of the garbage col-
lection timet2 to the application timet1. This results in the
equation a1�a = t2t1 , resolving toa leads toa = t2t1+t2 . Fort2 we inserted the garbage collection time for the deletion
of 20 objects, which takes 17 362 clock cycles (measured
with the worst-case performance benchmarks). This is an

upper bound estimation, because in reality only five objects
are garbage collected.t1 is the time interval in the left col-
umn of table 1. As you can see in the table, for a data in-
terval of 100.000 clock cycles the calculated percentage is
15%. This rate is slightly too large, because the 10% graph
scarcely shows any improvement. The garbage collection

portion of NADEL is a = n�t22t1+n�t22 . It depends on the heap
sizen and is therefore not applicable for all heap sizes.

0 1 2 3 4 5

million clock cycles

982

984

986

988

990

k
B

y
te

(f
re

e
m

em
or

y
)

no GC
10% GC
5% GC
1% GC

Producer/consumer Benchmark of NADEL

Figure 5. Free memory of NADEL with a fixed
rate of processing time

0 1 2 3 4 5

million clock cycles

982

984

986

988

990

k
B

y
te

(f
re

e
m

em
o
ry

)

no GC
10% GC
5% GC

1% GC

Producer/consumer Benchmark of KETTE

Figure 6. Free memory of KETTE with a fixed
rate of processing time

9. Conclusion

Both of the implemented algorithms have strengths and
weaknesses. KETTE has a better worst-case time complex-
ity and should therefore be preferred to NADEL. A slow
garbage collection means a high risk of lack of available
memory. The small number of modified instructions (16
bytecodes) and the relatively small average slow-down (5%



Table 1. Calculated processing rate for
garbage collection for given data rates

Data interval Processing
(in thousands of rate of garbage

clock cycles) collection
50 26%
100 15%
150 10%
200 8%
250 6%
500 3%

resp. 7%) induced by the traps is a benefit of both algo-
rithms.

The algorithms allow predictions about the application
slow-down for homogenous instruction and data mixes. For
KETTE with its linear time complexity dependent on the
heap size, it’s even possible to make adequate assumptions
about the runtime of the garbage collection. NADEL with
its quadratic time complexity does not allow estimations in
such a simple manner.

The computation time slice that thegarbage collection
needs to stay head-on-head with theobject creationis cal-
culable, because of the linear order and is for the current
implementation a maximum of 30%. This is a worst-case
assumption for an infinite garbage creation. Usual appli-
cations will get by with much smaller slices. The measure-
ments in the prior sections showed that 5-10% are sufficient.

NADEL is an attractive solution, because of its small bar-
rier code, the absence of synchronization with the marker
thread and the simple (and therefore less error-prone) im-
plementation. However, NADEL ’s worst-case time com-
plexity in O(n2) is a big drawback, reducing NADEL ’s us-
ability in real-time systems.

KETTE’s worst-case time complexity is inO(n) and
therefore a more attractive solution. The list operations in
KETTE need synchronizations and are not immune against
effects like priority inversion or long waiting for the proces-
sor mutex. KETTE needs four additional bytes in the object
header for the system-wide gray list of objects.

The performance tests have shown the importance of ef-
forts against priority inversion. For read and write barriers
synchronization is invisible to the application and therefore
more dangerous than explicit synchronization. The perfor-
mance tests have also shown that the multithreaded proces-
sor technique of the Komodo microcontroller enables new
scheduling techniques for garbage collection.

References

[1] H. G. Baker. List processing in real-time on a serial com-
puter.Communications of the ACM, 21(4):280–94, 1978.

[2] H. G. Baker. The Treadmill, real-time garbage collection
without motion sickness.ACM SIGPLAN Notices, 27(3):66–
70, March 1992.

[3] G. Bollella et al.Real Time Specification for Java. The Real
Time for Java Experts Group, Dec. 1999. Draft Version.

[4] U. Brinkschulte, C. Krakowski, J. Kreuzinger, R. Marston,
and T. Ungerer. The Komodo project: Thread-based event
handling supported by a multithreaded Java microcontroller.
25th EUROMICRO Conference, Milano, 2:122–128, Sep-
tember 1999.

[5] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Un-
gerer. Interrupt service threads - a new approach to handle
multiple hard real-time events on a multithreaded microcon-
troller. RTSS WIP sessions, Phoenix, pages 11–15, Decem-
ber 1999.

[6] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Un-
gerer. A multithreaded Java microcontroller for thread-
oriented real-time event-handling.PACT, Newport Beach,
pages 34–39, October 1999.

[7] U. Brinkschulte, C. Krakowski, J. Riemschneider,
J. Kreuzinger, M. Pfeffer, and T. Ungerer. A microkernel
architecture for a highly scalable real-time middleware.
RTAS 2000 WIP sessions, Washington, June 2000.

[8] E. W. Dijkstra et al. On-the-fly garbage collection: An
exercise in cooperation. Communications of the ACM,
21(11):965–975, November 1978.

[9] J. Emer. Simultaneous multithreading: Multiplying Alpha’s
performance.Microprocessor Forum, San Jose, Ca, October
1999.

[10] L. Gwennap. MAJC Gives VLIW a New Twist.Micro-
processor Report, 13(12):12–15, September 1999.

[11] C. Hansen. MicroUnity’s mediaprocessor architecture.
IEEE Micro, pages 34–41, August 1996.

[12] L. Huelsbergen and P. Winterbottom. Very concurrent mark-
&-sweep garbage collection without fine-grain synchroniza-
tion. International Symposium on Memory Management,
Vancouver, Canada, October 1998.

[13] M. S. Johnstone.Non-Compacting Memory Allocation and
Real-Time Garbage Collection. PhD thesis, The University
of Texas at Austin, 1997.

[14] J. Kreuzinger, A. Schulz, M. Pfeffer, T. Ungerer,
U. Brinkschulte, and C. Krakowski. Real-time scheduling
on multithreaded processors.The 7th International Con-
ference on Real-Time Computing Systems and Applications
(RTCSA 2000), Cheju Island, South Korea, pages 155–159,
December 2000.

[15] M. Nemirovsky. XStream Logic’s network communication
processor.Microprocessor Forum 2000, San Jose, CA, Oc-
tober 2000.

[16] B. Venners. Under the hood: Java’s garbage-collected heap.
JavaWorld, August 1996.

[17] M. Wallace and C. Runciman. An incremental garbage col-
lector for embedded real-time systems.Chalmers Winter
Meeting, Tanum Strand, Sweden, pages 273–288, 1993.

[18] P. R. Wilson. Uniprocessor garbage collection techniques.
International Workshop on Memory Management, Saint-
Malo, France, September 1992.

[19] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dy-
namic storage allocation: A survey and critical review.In-
ternational Workshop on Memory Management, 1995.


